- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bernardi, Mariangela (2)
-
Huertas-Company, Marc (2)
-
Margalef-Bentabol, Berta (2)
-
Abdurro’uf (1)
-
Accetta, Katherine (1)
-
Aerts, Conny (1)
-
Ahumada, Romina (1)
-
Ajgaonkar, Nikhil (1)
-
Alam, Shadab (1)
-
Alfaro, Pablo Vera (1)
-
Allende Prieto, Carlos (1)
-
Almeida, Andrés (1)
-
Anders, Friedrich (1)
-
Anderson, Scott F. (1)
-
Andrews, Brett H. (1)
-
Anguiano, Borja (1)
-
Aquino-Ortíz, Erik (1)
-
Aragón-Salamanca, Alfonso (1)
-
Argudo-Fernández, Maria (1)
-
Ata, Metin (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)ABSTRACT With the advent of future big-data surveys, automated tools for unsupervised discovery are becoming ever more necessary. In this work, we explore the ability of deep generative networks for detecting outliers in astronomical imaging data sets. The main advantage of such generative models is that they are able to learn complex representations directly from the pixel space. Therefore, these methods enable us to look for subtle morphological deviations which are typically missed by more traditional moment-based approaches. We use a generative model to learn a representation of expected data defined by the training set and then look for deviations from the learned representation by looking for the best reconstruction of a given object. In this first proof-of-concept work, we apply our method to two different test cases. We first show that from a set of simulated galaxies, we are able to detect $${\sim}90{{\ \rm per\ cent}}$$ of merging galaxies if we train our network only with a sample of isolated ones. We then explore how the presented approach can be used to compare observations and hydrodynamic simulations by identifying observed galaxies not well represented in the models. The code used in this is available at https://github.com/carlamb/astronomical-outliers-WGAN.more » « less
-
Abdurro’uf; Accetta, Katherine; Aerts, Conny; Silva Aguirre, Víctor; Ahumada, Romina; Ajgaonkar, Nikhil; Filiz Ak, N.; Alam, Shadab; Allende Prieto, Carlos; Almeida, Andrés; et al (, The Astrophysical Journal Supplement Series)Abstract This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.more » « less
An official website of the United States government
